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Abstract

Colombia is a key actor related with the adoption of the relevant UNFCC 
provisions referred in the context of obtaining result-based payments for 
REDD+ actions. Since 2012, the Colombian Forest Monitoring System (SMByC, 
Spanish acronym) has generated wall-to-wall historical information about the 
deforestation process over the last 27 years at national and regional levels. The 
SMByC generates a methodology that integrates tools for the preprocessing 
and semi-automated processing of satellite imagery to detect and quantify the 
loss of forest cover by deforestation. Also, the SMByC has done an extensive 
literature review, collecting qualitative and quantitative information to identify 
how the drivers of deforestation (illicit crops, illegal mining and postconflict 
scenario) could result in an increased forest lost during a postconflict scenario. 
Given that Colombia is a country conformed by regions that have differentially 
socioeconomic and environmental conditions, the study shows how the methods 
could generate official information and specifies the context of deforestation 
process of those regions.

Keywords: forest monitoring, deforestation, drivers, postconflict

1. Introduction

The Institute of Hydrology, Meteorology and Environmental Studies—IDEAM 
(Spanish acronym) is the forestry authority in Colombia, among other responsibili-
ties. Since 2012, in coordination with the Ministry of Environment and Sustainable 
Development, the operation of the Forest and Carbon Monitoring System for 
Colombia, SMByC, began as a functional tool to generate annual official informa-
tion on the monitoring of the forest cover and deforestation, early warnings for 
deforestation, and to estimate carbon stocks and GHG emissions related to natural 
forests.
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The SMByC complies with the provisions of the relevant decisions of the 
United Nations Framework Convention on Climate Change—UNFCCC and 
the Intergovernmental Panel on Climate Change (IPCC) in its guidelines of 
good practices, and operates under the principles of transparency, complete-
ness, comparability, consistency and precision. Likewise, it complies with 
the requirements established by National Statistics Agency (DANE, Spanish 
acronym) to be considered as official information. For the generation of this 
type of information, the SMByC developed a specific methodology through 
a publicly available digital satellite image processing protocol [1, 4, 25] and 
updated in [23]. All the information generated by the SMByC is available on the 
Web page of the system, with the exception of the one that has restrictions on 
use, at link [2].

The information generated by the SMByC allows the IDEAM to carry out its mis-
sion activities to monitor the biophysical resources of the nation, especially those 
related to forest resources, generating statistics, reports, maps and official reports 
that give an account of their status and dynamics. More information on the indica-
tors can be found in [3].

The main components of the SMByC are: (i) monitoring of forest/deforestation, 
(ii) monitoring of biomass in natural forests, and (iii) causes and agents of defor-
estation. The SMByC is an instrument that generates crucial information to design 
and implement national policies on climate change and forests.

2. Methods

2.1 Forest and deforestation definitions

We defined a forest as a piece of land mainly covered by trees that might 
contain shrubs, palms, guaduas, grass, and vines, in which tree cover predominates 
with a minimum canopy density of 30%, a minimum canopy height (in situ) 
of 5 m at the time of identification, and a minimum area of 1.0 ha. Commercial 
forest plantations, palm crops, and planted trees for agricultural production 
are excluded. This definition is in line with the criteria defined by the UNFCCC 
in decision 11/CP.7 [9], the definition adopted by Colombia under the Kyoto 
Protocol [10], and the definition of forest cover used by the Colombian National 
Greenhouse Gas Inventory [11].

Deforestation is defined as the direct and/or induced conversion of forest cover 
to another type of land cover in a given time [12].

2.2 Forest and deforestation monitoring

The SMByC developed a digital image processing protocol to assess the distribu-
tion, extension, and changes in forest cover in Colombia [6–8]. This protocol is 
implemented through the use of LANDSAT images [13]. The LANDSAT program 
of satellite images has several advantages for the monitoring of forest cover, such as 
a good record of images through time (historical availability), high temporal and 
spatial resolution, easy access to data, and possibilities of program permanence. The 
image processing protocol applied for the forest monitoring includes the following 
four major phases: (i) the digital preprocessing of satellite images, (ii) digital image 
processing, (iii) data validation, and (iv) monitoring data reporting. These phases 
are summarized in 12 methodological steps [14], described below in each technical 
phase.
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2.2.1 Phase 1: digital preprocessing of satellite images

In this phase, corrections, calibrations, radiometric normalizations, exact co-
registration, and reduction in atmospheric effects are applied, to assure the compara-
bility of images and to ensure that the detection of changes is not due to this type of 
factors. The specific steps followed during image preprocessing are as the following:

2.2.1.1 Step 1: images select and download

For each reference year, the SMBYC downloads the entire Landsat satellite pro-
gram (7 ETM+ and OLI 8), image catalog with L1T level (reflectance surface), and 
selects all those images with less than 90% cloud cover available between January 1 
and December 31 of the reference year. We give special emphasis for the images of 
the last quarter of the year that compiles the highest deforestation effect, mainly at 
the Amazon region in Colombia.

Images affected since 2003 by the failure in the Scan Line Corrector of Landsat 
7 ETM+ are processed applying a masking. To optimize this task, the SMByC 
developed a specific tool implemented in QGIS® [15]. When Landsat data does not 
provide sufficient cloud-free coverage, images from the CBERS, RapidEye, ASTER, 
and Sentinel 2 satellites programs are used.

2.2.1.2 Step 2: stacking bands

In order to archive the complete images, each image is reconstructed by stacking 
all bands, excluding the thermal infrared wavelength bands. In case of Landsat 8 
OLI, the aerosols and cirrus layers are also excluded.

Given the large number of images used (for example, more than 1400 images 
were used in 2015), specific algorithms have been developed to facilitate handling 
and processing, all of which are available for download:

• Algorithm to stack the bands [16].

• Algorithm to rename the images according to the SMByC structure [17].

• Algorithms to extract information from Landsat metadata files [18].

2.2.1.3 Step 3: geometric correction

For the construction of the annual image composite, it is necessary to have 
an exact co-registration at the pixel level among all the images acquired for each 
scene. The L1T products supplied by the Earth Resources Observation and Science 
Center (EROS) usually have an exact correspondence of the pixels. However, before 
performing the interpretation, a review of each image is made and those that do not 
meet this condition are adjusted.

2.2.1.4 Step 4: cloud masking and shadow

This allows masking and eliminates areas of clouds, banding, shadows, or haze. 
Before performing a change analysis, a semiautomated procedure is executed to inte-
grate the results of the masks produced with different filtering tools implemented 
by the IDEAM with a QGIS Plugin named cloud masking [15], (see Figure 1). For 
additional documentation on the operation of the Cloud masking tool, refer [19].
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2.2.1.5 Step 5: radiometric normalization

We used relative radiometric normalization of the images to adjust the radio-
metric values in order to reduce the variability between the images due to atmo-
spheric differences, lighting, sensor calibration, and geometric distortions, among 
others. This step allows the images of different years to be comparable and ensures 
that the changes detected are not due to this type of factors [20, 21]. Python scripts 
are available to execute this procedure—ARRNorm [22].

2.2.1.6 Step 6: generation of the annual composite of images

This step uses all satellite images available for Colombia of the corresponding 
year, allowing for each pixel a series of annual time values that include the reflec-
tance surface data valid for that year. The main metric used is the annual median 
of each spectral band, which has shown good results for the detection of changes. 
Thus, for each observation unit, a single radiometric value of annual reflectance 
surface is obtained in each one of the radiometric bands (Red, NIR, and SWIR-1 
and SWIR-2). The creation of these annual composites for the whole country is 
done through specific tools developed in the Python language [23]. Figure 2 shows 
the final result of the phase 1 using an RGB combination 453 that remarks the 
healthy vegetation distribution (brown tones), related mainly to forest distribution.

Although the use of the annual median values of reflectance reduces the areas 
without information, the error by omission could also increase if the forest cover 
changes occur during the last year’s months. To avoid this problem, after the process 
described above, a visual verification and manual adjustment of the results is 
performed using the data of the last pixel of the year (last pixel) and the last  
available image of the last year’s quarter.

2.2.2 Phase 2: digital image processing

This involves the automated detection of changes in forest areas using algo-
rithms, the visual verification of detected changes, and the execution of a quality 
control protocol.

Figure 1. 
Example of cloud masking filters available in tool developed by IDEAM.
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2.2.2.1 Step 7: detection of changes

To identify forest cover change, a direct and automated method is used applying 
the principal component analysis (PCA), over the image annual composite gener-
ated in the previous step, to then make a reclassification of the values of the pixels 
to the value of the corresponding class. The legend and the values assigned in the 

Figure 2. 
Annual image composite of surface reflectance for the year 2017 (Landsat ETM and Landsat 8 OLI images 
from January 1 to December 31).
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reclassification for each class are as follows: (1) stable forest, (2) stable nonforest, 
(3) deforestation, (4) regeneration, and (5) without information (corresponding to 
masked data). To adjust the areas without information detected for each reporting 
period, a time series analysis is applied to verify the temporal consistency. For this 
process, the information from the most recent reporting period is considered, and the 
areas “without information” are adjusted compared with the other reporting periods.

2.2.2.2 Step 8: visual verification of the changes detected

Once the PCA process has been executed by scene or set of scenes, each inter-
preter codes each pixel to the corresponding thematic class, obtaining a preliminary 
forest change map with the following classes or strata:

1. Stable forest

2. Deforestation

3. No information

4. Regeneration

5. Stable Nonforest.

For this step, each interpreter uses the following information: (i) the last images 
of each reference year, (ii) the annual composite images for each reference year, and 
(iii) the median compounds for the last quarter of the reference year. By imple-
menting this step, we seek to evaluate and revise the first version of the map of 
forest cover change in order to identify inconsistencies with respect to the changes 
detected in previous years and to generate an adjusted version of the map.

2.2.2.3 Step 9: quality control

The quality control process involves monitoring all the technical steps executed, 
from the download of the satellite images and the intermediate products to the final 
results of the Forest Change Map and Forest Cover Map. The SMByC has consolidated a 
set of tools to guarantee the quality, completeness, and consistency of the data, through 
a Python script executed in ArcGIS© to produce quality control reports for each scene.

2.2.3 Phase 3: thematic accuracy assessment

Thematic accuracy assessment allows generating reliability metrics of the 
official forest monitoring data generated to: (1) avoid bias, which means to avoid 
a systematic underestimate or overestimate of forest cover and forest change, and 
(2) to reduce uncertainty as much as possible [24], in line with guidelines proposed 
by the Global Forest Observation Initiative (GFOI). This procedure applies user’s 
precision (commission error) and the producer’s precision (omission error) fol-
lowing recommendations developed by [25] over the forest change map. For the 
execution of thematic accuracy assessment, a team of four experts is formed under 
the following structure:

• A leader of the evaluation, in charge of coordinating the interpreters, who 
designs and implements a probabilistic sample. The leader performs the consoli-
dation and verification of the interpretation as well as the accuracy analysis.
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• Three interpreters, with extensive experience in visual and digital interpretation, 
who are trained to apply the forest definition in medium-resolution optical images.

2.2.3.1 Step 10: sampling design

This analysis consists of the implementation of a stratified random sampling. 
The size of the sample (n) is selected following [26]. The assigned proportion of 
each class uses a proportional allocation based on the area of each stratum com-
pared to the total area allocated [27]. The proportions of each of the strata are based 
on the forest change map for the reference year, which are as follows: (1) stable 
forest, (2) stable nonforest, and (3) deforestation. Additionally, each stratum is 
subdivided based on a deforestation risk map that identifies two main areas (low 
risk and high risk) based on the historical trends of deforestation.

Equation (1) shows the math expression used to calculate the proportion   ( W  i  )   of 
mapped area   ( A  m,i  )   for each stratum  i , related to the total area of all classes   ( A  tot  )  :

   W  i   =   
 A  m,i   ____ 
 A  tot  

    (1)

The classes with the largest mapped area are assigned a p-value of 0.9, consider-
ing that these classes have a high accuracy, while the change classes, high-risk defor-
estation areas (DEF-AR) and low-risk deforestation areas (DEF-BR), are assigned a 
p-value of 0.8, considering that for these classes, there is a greater uncertainty and 
therefore less accuracy.

The standard error (Si) associated to each class is calculated as the square root of 
the variance. The total size of the sample (n) is calculated as the sum of the products 
of the area ratio (  W  i   ), associated to each class i, multiplied by the standard errors 
(Si) of each class, and divided by a general standard error of the classification (So), 
squared Eq. (2)

  n =   [  
 ∑ 
i=1

  
n
    ( W  i    S  i  ) 

 ________ 
 S  o  

  ]    

2

   (2)

For each reference year, a value of 0.005 is assumed for the expected general 
standard error of classification. The assigned proportion of each stratum is based 
on a simplified approach to the optimum, based on the proportion of area of each 
stratum compared to the total area allocated. Thus, the smallest strata are adjusted 
by minimizing the variance estimator for the accuracy of these user classes, in 
accordance with the recommendations of [25].

2.2.3.2 Step 11: sampling implementation

The sampling implementation, as well as the sampling point interpretation, is 
done in Acatama, a self-developed software that is available for QGIS at https://
bitbucket.org/smbyc/qgisplugin-acatama.

2.2.3.3 Step 12: sampling points interpretation

The interpreter team performs a visual interpretation of each unit of verifica-
tion (point), applying the forest and deforestation definitions adopted by the 
SMByC. This procedure is applied using Acatama tool [14] that allows defining a 
fixed spatial reference scale for interpretation, using all the satellite data available. 
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During this procedure, we also perform the classification and identify the nonclas-
sified samples (Figure 3).

We used the satellite data as reference data for the sampling point interpretation 
for periods before and after annual composite generated in Step 6. Also, we used 
Google Earth Engine, Bing images, or other high-resolution image repositories if 
available.

2.2.3.4 Step 13: error matrix and confidence intervals

Thematic accuracy assessment of the forest cover and deforestation data for 
the reference year is done by constructing a confusion matrix [20], using the data 
generated in the previous step. Subsequently, from the error matrix, a new matrix is 
constructed and is expressed in terms of the proportion of the estimated area.

2.2.4 Phase 4: calculations and reports

To calculate the deforested area between two analysis periods, only the areas 
with available data in the two analysis periods are considered, so the associated  
(un)certainty that the event occurred in the period is analyzed.

Forest losses detected after one or several dates without information were not 
included in the reports in order to avoid overestimated rates due to different factors 
(e.g., high cloudiness or sensor failures). After each deforestation monitoring 
period, an analysis of consistency of the time series is performed, verifying that 
each pixel marked as deforestation has not been marked in the previous periods (at 
least 6 years) as deforested. If this is the case, the most recent result is corrected 
and marked as no forest (NB) or the specific area is reviewed retrospectively. The 
same procedure is applied for “forest recovering,” maintaining the same check 
process in which a pixel marked as deforested could not be assigned as “forest” 
class until after 6 years.

Figure 3. 
Acatama QGIS© tool. Verification window for sampling point interpretation.
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The implementation of this methodology allowed to identify the changes in 
forest cover (expressed in hectares) for the last 27 years in Colombia, generating 
reports for the years 1990, 2000, 2005, 2010, and 2012, and five annual reports 
for the years 2013–2017. Figure 4 presents the workflow implemented. Additional 
information is available at [28].

3. Results and discussion

3.1 Forest cover in Colombia

In 2017, the natural forest area in Colombia was 59'312.369 ha, which represented 
51.9% of the continental and insular Colombian territory (Figure 5). At a regional 
level, some provinces show high forest cover like Amazonas (97.3%), Vaupés (96.5%), 
and Guainía (92.9%). Likewise, other departments like Atlántico (1.4%), Sucre 
(2.6%), and Cesar (8.7%) have the smallest area of their territory with natural forests.

Figure 4. 
Methodological workflow applied in the digital image processing protocol V.2 (Source [11]).
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Figure 5. 
Forest cover in Colombia for the year 2017 (green) and deforestation distribution for the period 2013–2017 (red).

3.2 Patterns of forest loss in Colombia

In the last 27 years (1990–2017), Colombia lost more than 6.7 million ha of 
natural forest. Only in the last 5 years (2013–2017), a forest loss of 783,899 ha was 
identified. Deforestation has mainly been concentrated in the so-called “Colombian 
Amazon deforestation arc,” located between the departments of Putumayo, 
Caquetá, Meta, and Guaviare. Other deforestation hotspots are Serranía de San 
Lucas (Antioquia and Bolívar departments), Chocó department, and Catatumbo 
(Norte de Santander department) (see Figure 5).

In regional terms, the Colombian Amazon presented the highest deforestation in the 
last 5 years (2013–2017), accumulating 46% of the total deforestation, especially in areas 
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such as the so-called “Sabanas del Yarí—4” (limits of Meta and Caquetá departments), 
northwest of the Guaviare department—2, Meta department—3, and the middle and 
lower sectors of the Río Caguán basin—1 (Caquetá  department), (Figure 6).

During 2017, the deforestation in Colombia raised to 219,973 ha, an increase 
of 23% compared with the deforestation reported for the year 2016. In total, 65% 
of forest loss was concentrated in the Colombian Amazon deforestation arc.

It is important to mention that deforestation is ostensibly less in areas such as National 
Natural Parks, Indigenous Lands, and Afro Colombian community Lands, compared 
with the rest of the country. In 2017, in 723 municipalities, at least 1 ha was deforested.

Overall, 74% of the deforestation in the whole country was concentrated in 25 
municipalities, being San Vicente del Cagüan (Caquetá department), Cartagena 
del Chairá (Caquetá department), San José del Guaviare (Guaviare department), 
La Macarena (Meta department), and Calamar (Guaviare department), the ones 
with the largest deforested area.

3.3 Rates of forest loss

At the national level, in 2017, the deforestation rate in Colombia was −0.38, which 
is the highest value of the last 17 years, only overpassed by the rates registered in the 

Figure 6. 
Main deforestation hotspots in the Colombian Amazon (period 2013–2017).
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1990s. At the regional level, there were departments with deforestation rates ostensi-
bly lower than the national average, such as the case of the departments of Amazonas 
(−0.01%), Vaupés (−0.04%), and Vichada (−0.09%). On the contrary, the deforesta-
tion rate in Antioquia (−0.96), Caquetá (−0.92), and Guaviare (−0.8) was ostensibly 
higher than the national average. In these cases, the government should put special 
attention because they are well above the average world deforestation rate of −0.21% 
[26], and even above countries such as Indonesia (−0.7%) or Bolivia (−0.5%).

3.4 The early warning system

The implementation of the described methodology has allowed to identify 
the main recent active cores of deforestation for the year 2018. IDEAM generates 
four deforestation early warning bulletins per year that are available through the 
institutional platform. These bulletins are based on the digital image processing of 
low spatial resolution (MODIS Terra/Aqua), medium spatial resolution (sentinels 
1 and 2), and high spatial resolution satellite data (Planet Scope), with the use of 
automated change detection algorithms, to detect quarterly (inclusive monthly) 
the main forest loss cores. With these bulletins, users can know the distribution 
and geographic location of the early alerts (including specific coordinates) or the 
location of the active deforestation nuclei (maps with tonalities indicate the mag-
nitude of the alert), to detect the forest areas with loss of natural forest (Figure 7). 
This information is useful as a basis for effective control to carry out timely actions 
against activities such as the illegal mining, illicit crops, praderization, illegal log-
ging, conversion to agricultural crops, and forest fires, among others.

In 2018, it was identified that the arc of deforestation in the Colombian Amazon 
is the area that concentrated the greatest warning of deforestation, mainly in the 
first and fourth quarters. Other areas with active deforestation cores are Catatumbo 
(Norte de Santander department), Serranía de San Lucas (Antioquia and Bolivar 
departments), Paramillo (Antioquia and Córdoba departments), and some sectors 
of Cauca and Chocó departments.

Likewise, the IDEAM performs an analysis of active fires [29] as a proxy of active 
deforestation, which monitors the possible occurrence of burning areas or active fires. 
This platform (see Figure 8) allows to access active fire information on a daily basis or 
an aggregated basis for the national, departmental, and regional levels since 2000.

3.5 Drivers and agents of deforestation

Agricultural and livestock activities generate the greatest pressures on natural areas, 
by establishing productive systems that are characterized by low levels of productivity 
and for promoting new zones of colonization or expansion from the existing ones [30]. 
Traditional agricultural production represents about 10% of the total agricultural pro-
ductive area of the country [2, 31]. The activity represented about 7% of the new land 
transformed between 2005 and 2012, mainly impacting the Andean and Amazonian 
regions, among which 86% of the agricultural land transformed in Colombia is distrib-
uted. However, livestock, especially cattle, which is one of the main economic activities 
of the country, appears as the main driver of deforestation at the national level. Overall, 
we have estimated that 51% of the total forest loss was due to the increase of areas in 
pastures, in theory to settle livestock productive systems [11].

The production of illicit crops, in particular coca leaf, has also been recognized 
as an important cause of deforestation [32]. Although its direct impact is usually 
reduced compared to other causes of deforestation, the fragmentation of the forest 
matrix caused by this driver has a decisive indirect impact on the advance of the 
agricultural frontier [4]. In 2017, the estimated proportion of forest loss due to illegal 
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crops is 6% [33] and is primarily concentrated in the hotspots of deforestation of 
the country. Another smaller but still important driver of deforestation is forest fires 
related to land tenure conflicts, certain agricultural management practices, activities 
such as hunting, pest and weed control, and expansion of crops and pastures for 
livestock [34, 35]. In our work, we identified that 2800 ha were deforested by 117 fires 
in 61 municipalities, which is equivalent to 2.3% of the total deforested in the period 
of 2014–2015 [4, 36]. Likewise, illegal mining is having an important effect on forest 
loss. In total, we quantified the direct loss of natural forest cover associated with 
alluvial gold exploitation activities in 2681 ha for the year 2014 [37]. In 2015, defores-
tation associated with alluvial gold mining reached 7890 ha (7% of national defor-
estation) and was concentrated mainly in three natural regions (Pacific, Andes, and 
Caribbean) [33]. A study carried out by UNODC and the Government of Colombia 
indicates that 38% of the territory affected by alluvial gold exploitation at the 
national level registers the presence of illicit crops [5, 37]. In the territories affected 
by coca, the phenomenon of alluvial gold exploitation has been growing rapidly, in a 
pattern of clear spatial and social association between the two activities [4].

Figure 7. 
Deforestation early warning persistence for the year 2018.
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Finally, since the peace talks began between Colombia’s government and the 
Revolutionary Armed Forces of Colombia (FARC) in 2012, experts warned that 
the postconflict period could have negative consequences of forests, mainly due to 
access to areas that were restricted during the conflict and the lack of planning for 
the sustainable development of these territories [38, 39]. In the vast majority of cases, 
the areas with the greatest forest presence and the threat of deforestation are located 
in small- and medium-sized municipalities (up to 100,000 inhabitants), where the 
end of the conflict would surely increase its development at expenses of the removal 
of vast areas covered by natural forests. Even in the most environmentally optimistic 
postconflict scenario, it can be expected that at least during a transitional period, the 
first economic benefits at the end of the conflict will come from the abundant natural 
capital available in the region. In this context of accelerated economic growth with 
few restrictions, forests will continue to be one of the most affected resources [4].

4. Conclusions

Colombia is considered a forestry country. The natural forest area covers 
59′312.369 ha, which represents 51.9% of continental and insular Colombian territory. 
Nevertheless, in the last 27 years (1990–2017), Colombia lost more than 6.7 million ha 

Figure 8. 
Active fire platform at IDEAM’s web portal [29].
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of natural forest, and in the last 5 years (2013–2017), the estimated forest loss was of 
783,899 ha. This finding ranks Colombia within the top 15 countries with one of the 
highest forest covers on earth (52%) and shows the high utility and need to maintain 
and improve the Forest and Carbon Monitoring System for Colombia—SMByC.

Overall, the SMByC is a prominent tool to help the country to accomplish with 
its commitments in terms of minimizing deforestation and carbon emissions in the 
coming decade. Forest monitoring indicators have a special importance to follow one 
of the goals established at 2030 for the Sustainable Development Goals—SGD, related 
to the conservation of at least 50% of the continental and insular territory covered 
by forests. Here, we show that based on the optimal use of digital image processing 
protocol, it is possible to generate reliable official information on the distribution, 
extension, and changes in forest cover at the national level. The SMByC will certainly 
play a key role on facing the expected changes of the ongoing climate change.

Since many of the armed conflicts in tropical regions occur in areas with high forest 
cover, like the one we have had in Colombia, the main challenges for both society and 
government are to take advantage of the great opportunity contributing toward peace-
building, reducing deforestation, while promoting sustainable development [40].
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